

Common heights of EMS for communication base stations

What frequency does EMS radio communication take place in?

EMS radio communication takes place in the VHF low band, VHF high band, and UHF band. VHF low band is the radio frequencies from 32-50 megahertz (MHz). They are able to follow the shape of the earth allowing communication over long distances. These frequencies are more susceptible to interference from, weather, buildings, and electrical equipment.

Does a 120 ft high antenna have a good response?

However, the response of the real-world 120-foot high antenna is still up some 2 dB from the response for an identical antenna over flat ground at this angle. On this frequency, the local terrain has helped boost the gain at the medium angles more than a similar antenna 120 feet over flat ground.

Why is communication important in EMS?

Communication in EMS is essential. Patients must be able to access the system, the system must be able to dispatch units, EMTs must have a means of communicating with medical direction and receiving facility, and EMTs must be able to communicate vital information to other personnel.

How does EMS rebroadcast a radio signal?

Some rebroadcast by converting signals to radioand others do so by converting to microwaves. It may also convert the signal to a telephone signal and send the communications through public or dedicated telephone lines. EMS radio communication takes place in the VHF low band, VHF high band, and UHF band.

What are the disadvantages of an EMS system?

The disadvantages include no protected channels or frequencies for EMS and competition with the general public for use. Sophisticated global positioning systems are becoming more common in EMS systems. Dispatchers are highly trained and experienced to function in the modern dispatch center.

Does height affect RF exposure?

Nevertheless, the potential for RF exposure is again directly related to the distance separating the transmitting antenna and the human beings around it. Again, doubling the height will reduce potential exposure by 75%. The higher the antenna, the less there will any potential for significant RF exposure.

In the world of EMS, however, the answer to effective communication is surprisingly simple yet crucial: height. You see, a base station needs to be at a high point or on a tower to maximize ...

Common heights of EMS for communication base stations

Web: https://www.edukacja-aktywna.pl

